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Estimation of()-Factors and Resonant Frequencies

Kevin J. Coakley, Jolene D. Splett, Michael D. Jang3ienior Member, IEEEand Raian F. Kaiser

Abstract—We estimate the quality factor Q and resonant ,\i‘}\ R L
frequency f, of a microwave cavity based on observations of a res-
onance curve on an equally spaced frequency grid. The observed
resonance curve is the squared magnitude of an observed complex
scattering parameter. We characterize the variance of the additive v, G) 51:,11% énzzlg ézo
noise in the observed resonance curve parametrically. Based on
this noise characterization, we estimateQ and f, and other
associated model parameters using the method of weighted least
squares (WLS). Based on asymptotic statistical theory, we also I
estimate the one-sigma uncertainty of) and fo,. In a simulation c
study, the WLS method outperforms the 3-dB method and the _
Estin method. For the case of measured resonances, we show thaf9- 1-
the WLS method yields the most precise estimates for the resonant

frequency and quality factor, especially for resonances that are does not provide an estimate of the covariance of the estimated
undercoupled. Given that the resonance curve is sampled at a podel parameters.

fixed number of equally spaced frequencies in the neighborhood . .
of the resonant frequency, we determine the optimal frequency Here, we present a new method to estim@t@nd f, that

spacing in order to minimize the asymptotic standard deviation &ccounts for frequency-dependent additive noise. We charac-
of the estimate of eitherQ or f,. terize the frequency-dependent noise in the measured resonance
Index Terms—Cylindrical cavity, experimental design, CUIVe in' tgrms .ofa parametric model with tvx_/o parameters. Iq
microwave, noise characterization, optimal frequency spacing, the statistical literature, such an approach is known as vari-
quality factor, resonance curve, resonant frequency. ance function estimation [4]. In our model, one parameter
corresponds to a noise floor, while the other parameter rep-
resents the frequency-dependent part of the noise. Based on
the estimated variance function parameters, we estimate the
N THIS study, we characterize the frequency-dependent adsonance curve parameters (includifgand f,) using the
ditive noise in measured microwave cavity resonance curv@eighted least squares (WLS) method. Due to the sensitive
and estimate the quality fact@r and resonant frequengy of nature of this optimization problem, we take special care to
the microwave cavity. The data used are the squared magnitudasure that we find (or very nearly find) the global minimum of
of the observed values of frequency-dependent complex sa&e objective function that we seek to minimize. In particular,
tering parametersSy; |2. instead of starting our optimization algorithm from just one
The resonance curve parametérsind f, can be estimated set of initial guesses for the model parameters, we perform the
from the observed values 05, | using either the 3-dB or the optimization algorithm for each of many randomly selected
Estin method [1]. The Estin method is an example of a resimitial guesses.
nance curve area (RCA) method [2]. In these approaches, thB8ased on the estimated variance function parameters and esti-
estimated resonant frequency is the frequency at which the remted resonance curve model parameters, we estimate the one-
onance curve reaches its maximum value. Hence, the estimasiggina random errors @ and f, using asymptotic statistical
resonant frequency is constrained to take discrete values. Rheory. In our experiments, the resonance curve is sampled at
ther, neither the 3-dB nor the Estin method exploits knowled@®1 equally spaced frequencies in the neighborhood of the res-
about frequency-dependent additive noise in the data. In relatathnt frequency. We compute the asymptotic standard deviation
work, Petersan and Anlage [3] demonstrated that the metheftthe Q and f, estimates as a function of the frequency spacing
of least squares (LS) provides superior estimate§ @nd f, df, the model parameters that characterize the resonance curve,
when compared to the 3-dB method and to the related RG#d the additive noise. For optimal estimationiafusing our
method for a similar resonance curve problem. However, fekperimental data) = Q( fmax/fo — 1) & 2.6, wheref,,.y is
cases where the variance of the additive noise varies with ftae largest frequency. For optimal estimationfef A ~ 0.6.
guency, the method of LS is suboptimal. Further, the LS method

Resonant cavity equivalent circuit model.

I. INTRODUCTION

Il. RESONANCECURVE MODEL
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loops that excite the cylindrical cavity. We use a series inductbiowever, if we reduce the coupling level so that the cylindrical
(L), capacitor(C'), and resisto R) to model the cylindrical cavity is very undercoupled’{ <« 1 andf; < 1), we can
cavity. An impedance-matched source is connected to port ameglect the coupling factor$, andgs and rewrite (10) as
of the cavity while an impedance-matched load is connected

T(fo) . T()

to port two. Note that the source and load can be interchanged’(f) = 5 s (12)
without loss of generality. o _ 1+ Q2 (fio _ f?o) 1+ Q2 (% _ %)
We defineT’(f) as the transmission loss through the cylin-
drical cavity with the assumption that the measured quality faQdds ap-
proximately Q. (If coupling cannot be ignored, see [7] for
T(f) = Pin (1) methods of calculating; and/,.)
Py Atthekth frequency, we model the measured resonance curve
wheref is the frequencyP;, is the maximum power delivered &S
to amatched load connected at port one, Bpds the maximum T(fo)
power delivered to the load at port two [5]. Solving 8¢, and Tn(fr) = 5 +BG +e(fi) (13)
Py, we find 1+@Q? (;i— - Zf—)
P = I* 7 = V_f @) whereT,,,(fr) = |S21(fx)|? represents the observed measure-
" 1 47, ment,T'( f.) denotes the true value or “noise-free” measurement,
and BG is a noise floor, and( f;,) is additive noise with an expected
Py = LI 7, value of zero and varianc€?; ). The model parameters form
V2 15 a four-vector,d = (61,6, 03,04) = (T(fo), Q. fo,BG). For
= Zo 2 (3)  the observed data, we model the variance of the additive noise
(14 B1 + f2)* + QF (%—%) as
2
where VAR[e(fr)] = 02(5,) = . Vfl PRE +7  (14)
k 0
o = "2 @ vt (f - )
and R where~; and~, correspond to the frequency-dependent noise
n2 7 and the noise floor, respectively. In Appendix C, we prove that
[ = R (5)  our variance function model (14) is exact for the case where the
additive noise in the measurement of the real pashefand the
In (3), the resonant frequendy is defined as additive noise in the measurement of the imaginary pas,of
1 are statistically independent realizations of the same Gaussian
I 3 = 12 LC (6) process. In our proof, we assume that the expected values of the

additive noise realizations are zero.
and the unloaded quality fact@l, is

A. Parameter Estimation

27I'f0L —
Qo = R (7) Suppose we measure the resonance cunid distinct fre-
o ) ) guencies and estimate the model parameters by minimizing a
. 45162 M
T(f) = 5 (8) ; 2
L= Too(fr) = T (fr)] - 15
e a(E-5) Sl - Tl 9
0 =1
At resonancé f = fy), the transmission loss reduces to If the weightsw, are all equal, minimization of yields the LS
estimate off. If the kth weight is set to the reciprocal of the
T(fo) = — D102 (9) (estimated) variance o, (fi), i.e.,wi = 1/VAR[T,(fu)],
(14 B+ B2)? then minimization off. yields the WLS estimate of.
- : : We assume that additive noise realizations are statistically in-
Taking the ratio ofl" T bt
aking the ratio off( fo)/T'(f) we obtain dependent. Given the parameters which characterize the reso-
02 ( o fo ) 2 nance curvé and the variance of the additive noise, asymptotic
T(fo) _ 0\fo T (10) theory [8] predicts the covariance of the parameter estimates.
T(f) (14 61+ B2)? From one curve, the predicted covariance is
Note that, in practice, the unloaded quality facfy is larger C/O\V(g) — (BTy-1p)-1 (16)
than the measured quality fact@rdue to the effects of the cou-
pling loops where the elements of the diagonal mafriare

Qo = Q1+ 1 + fa). (11) Vie = VAR[T (f1)] 7
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and
By = ———. 18 by oo
kj 89] ( ) g é LN e
% 3 AN
Thus, the predicted asymptotic variance of thth parameter + 3 ° :}'.\"';; ;;'-.:1:'.;;':9}
estimated from a resonance curve is o Lt g:.'-:.r-:' :
o, = (BTVIB)L,. (19) 5
,r‘;]\l;cie;rang%vel_ys, the asymptotic standard error (ASE) of the esti 09998 10,0002 Y 50008 100002
m
Frequency (GHz) Frequency (GHz)
0—;771 = (Iﬁl)mm (20) @ (b)
where . _ 8 .
I = Z 1 8<Tm(fk)> 8<Tm(fk)> (21) 2 = . 2
ij — VAR[Tm(fk)] 00; ae] % % g
The ASE can be thought of as an approximation for the star;lf; 8 g
dard deviation of the parameter. As the signal-to-noise rati™ < i N
(SNR) of the data increases, the accuracy of this approximatic = S
improves in general. For more discussion of asymptotic prope! 99'998 ' 100‘002 99'998 ' 100'002
ties of estimates of nonlinear WLS, see [8]. ' ) ’ ’
Frequency (GHz) Frequency Bin (GHz)
B. Computational Details (© (d)
The a|gorithm for estimation d@ andfo has four Steps_ Fig.2. (a) Anobserved and predicted (from WLS fit) resonance curve. (b) Raw

residuals. (c) Fractional residuals (absolute residuals dividéd Joyd) Binned

Step 1) CompUteQ using the Estin method [1]. (Se€fractional rms residuals versus frequency. In (a) and (d), model predictions are

Appendix A.) shown as solid lines.

Step 2) Use@ from the Estin method as a starting value

Step 3) Estimate the variance function and weights basq

in the nonlinear fitting algorithm that computes un-

iohted LS estimates of th del tors. T The nonlinear fitting routine used to determine the LS and
weighte estimates ot the mode! parameters. lWLS parameter estimates minimizes a general, unconstrained
background parameter BG is constrained to be po

. N gbjective function using the analytic gradient and Hessian of
itive b_y expressing it as the squared value of the aphe objective function [9].

propriate parameter in the model. The objective function was minimized for each of 250 ran-
gmly generated initial parameter values. The final parameter
stimates are those that yield the smallest value of the objective
nction. If only one set of initial parameter values is used, the
jective function may converge to a local minimum rather than
d global minimum.

on the “binned” squared residuals by the method o}
LS. Frequency bins were determined by dividing th

entire frequency range of the resonance curve into 4
equal sections. The variance estimates were adjusiﬁ

prvl?r:d byhetr:jegre_e of frgedorc? flagtor‘z_mfl/lgd?.g The same nonlinear fitting routine used to compute LS and
ough the variance is modeled usinfandy; WLS parameter estimates was also used to estimate the vari-

to ensure a positive variance estimate, the OPUIMIZ&L -0 function parameters. Again, we experienced convergence

tion code searches for a SOIEJ“O” n Ehe unconStram‘fﬁoblems, so random initial parameter values were used.
~1 and~, space. We repotty; | and |9s|.

A typical variance function is shown in Fig. 2(c).
The vertical axis displays the fractional residuals,
which are absolute residuals divided by, and the In our study, we employed a cylindrical cavity resonator,
horizontal dashed line near the bottom of the plathown in Fig. 3. The cavity was nominally 450 mm long
represents the fractional background levgl/6,. and 60 mm in diameter, and it was composed of a helically
Fig. 2(d) displays the same data when residuals amound cylindrical waveguide terminated by two endplates.
assigned to frequency bins and the average fractiorgdth of the gold-plated endplates were optically polished. One
residual is computed for each bin. endplate was fixed on the top of the cylindrical cavity, while

I1l. EXPERIMENTAL STUDY

Step 4) Use theunweightedLS parameter estimates ashe bottom endplate, with a slightly smaller diameter than that

starting values in the nonlinear fitting algorithm thaof the cylindrical waveguide, traveled over a range of 25 mm
computesweighted LS parameter estimates. Thethrough the use of a motorized micrometer drive. Movement of
weights used in the nonlinear fit are derived fronthe bottom endplate allowed for tuning of the cavity resonant
the variance function estimated in step 3. frequency.
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Fig. 3. Cylindrical cavity in the “sample loaded” state. g * * * X % x
- O A * * *
As in [10] and [11], use of a helical waveguide attenuatedie y
many of the undesired resonant modes while allowingthg JE ~ ~ o |
cavity modes to propagate. Our particular helical waveguide ® wis *
consisted of two copper wires embedded in epoxy surrounde A 3da/Esin
by a fiberglass cylinder. Although the helical waveguide low- 5 o s 2'0 2'5 3'0
ered the quality factor of the cavity slightly, it also eliminated
many of the unwanted resonant modes. Thus, the advantages u Curve Number
using the helical waveguide outweighed its associated disadvan- ()
tages. Fig. 4. Estimated values of: (8) and (b)fo — frer (frer = 10 GHz) for each
Near the top of the cylindrical waveguide section were t 3_0 g);%%%mental curves corresponding to the “sample loaded” state where
coupling loops, extending from two coupling holes located on ~ =
opposite sides of the cylindrical waveguide. In order to excite ssos 100008 soos 100008
a resonance in the cylindrical cavity, each coupling loop wa: e e & T
connected to an automatic network analyzer via a coaxial tran: {1 ! + | o020
mission line. Cavity coupling was altered by changing the exten 1 7 " A, +++ A [0
that the coupling loops protruded into the cavity. In particular, 1. g iy % 2 | ] s 5 | o00s
we kept the resonant peak amplitude beledd dB so that the o T e 200
losses due to the coupling loops were negligible. 0.020 . . K %L
We operated the cylindrical cavity in two states, “air” and °°° 1N A 3 N T
“sample loaded.” The “air” state refers to the cavity without @ cee | % %% | as, 3 SAVEED o I I W
. “ ” i e st R L e T
sample present, while the “sample loaded” state refers to th  co 41— = o 5 =
cavity with a dielectric sample on the bottom endplate. We ads - + . . . - 0020
justed the cylindrical cavity length to obtain a resonant fre-§ 1 A A \ "\ L O
quency near 10 GHz for each cavity state. For each cavity stat T | w5 %, | 2 5N oh T e Al it 0005
. + s, + + + + IR+ +
30 resonance curves were collected at two different frequencz | +—= = m w "t 00
spacingsif. Each resonance curve was made up of 201 equall S oo { -+ +
spaced points, and we performed 512 averages on each re:':%gg‘z' * N et + i
nance curve to reduce the level of noise. For each curve, Wi | Y +; Pt +: el T e A i
estimated) and f, by various methods. Fig. 4 displays the — sof———"F— = o
estimates of) and f, for each of the 30 experimental curves i . . o220
corresponding to the “sample loaded” state. The binned frac 1 LA+ e * oo
tional root-mean-square (rms) residuals and the estimated va. ~ |_#"X A AN AA oos
ance functions are shown in Fig. 5 for the 30 “sample loaded | e T L s [ oo
resonance curves. 0.020 - . . . .r
Tables | and Il display mean estimatesi@find f, and their 32:2 ot A . 7 i
associated standard deviations (shown in parentheses) for t oos 4_#¢ "%t m A‘F‘“%@kﬁ”’ A
various methods. For each curve, we estimated the ASE bas 0 " e e A
9.9996 10.0004 9.9996 10.0004 9.9996 10.0004

on the parameter estimates and (20). The WLS method yielc
estimates with the lowest variability.

For 30realized data sets, a 95% two-sided confidence intengl 5 predicted (ines) and observed variance functions for 30 observed
for o is (0.79645,1.34435). Thus, the sampling error is notresonance curves corresponding to the “sample loaded” state.

Frequency Bin Midpoint (GHz)
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TABLE | TABLE Il
STATISTICAL PROPERTIES OR} ESTIMATES COMPUTED FROM REAL DATA PARAMETER VALUES USED IN THE SIMULATION f.of = 10 GHz
INCLUDING: THE MEAN OF (2, STANDARD ERROR OF THEMEAN (SHOWN
IN PARENTHESEY, AND THE STANDARD ERROR OF(). FOR THEWLS “sample loaded” “air’
METHOD, WE LIST TIHEXIEAN ESTIMATE OF o5 ETHE ASEOFQ (20), Parameter df = 5400 Hz  df = 3400 Hz
AND |TS ASSOCIATED STANDARD ERROR 75 % 10° 2464 8943
Cavity 02 45888 74081
State | df (Hz) | Estin 3-dB LS WLS & 03 = fres (Hz) 11845 1458
i 3400 | 74335(45) 75051(140) 74119(61) 74081(44) : 64 x 10° 0.20 0.28
amr 9
246 766 334 241 238(3) m i 189 8';; fg?
1000 | 75150(90) 75406(117) 74143(63) 74153(55) 2 : :
491 643 347 304 528(5)
sample | 5400 | 46143(49) 46659(150) 45885(40) 45888(29)
loaded 270 823 218 161 206(3) 8 T
1500 | 47225(70) 47303(110) 46029(53) 46020(48) Si 1
381 605 292 263 483(5)
o 1
,%_ 41y | ----- Sample Loaded
o o i
TABLE I <C o 1
STATISTICAL PROPERTIES OFfo ESTIMATES COMPUTED FROM REAL DATA B 8 4
INCLUDING: THE MEAN OF fo — frof (fret = 10 GHZ), STANDARD ERROR OF <
THE MEAN (SHOWN IN PARENTHESEY, AND THE STANDARD ERROR OF fo. FOR J
THE WLS METHOD, WE LIST THE MEAN ESTIMATE OFO’ , THE ASE OF fo § |
(20), AND ITS ASSOCIATED STANDARD ERROR S : , ,
0 5 10 15 20
Cavity AEstin, 3-dB . LS . WLS A= MQ/t)
State | df (Hz) | fo = fres H2)  fo— fres (Hz)  fo— fres Hz) &% max o
air 3400 2365(651) 1424(31) 1458(79) (@
3565 444 435 125(2) ~
1000 -2381(653) -3249(119) -3245(119) § j
3578 654 650 79(0.8) Y e Sample Loaded
sample | 5400 8696(1239) 11534(94) 11845(98) — Air
loaded 6785 517 537 280(5)
1500 8530(960) 9710(45) 9751(44) < o |
5258 249 239 182(2) PR
5
<
large enough to explain the discrepancy between the empiric b
standard deviation of th@ estimates and the estimated ASEat 2 |
df = 1000 Hz and 1500 Hz. L ' ' ' '

0 5 10 15 20

The asymptotic standard errorﬁj‘ is much smaller than the o ty@It)
A= max 0O

estimated standard deviation ff computed from the 30 reso-
nance curves. We attribute this discrepancy to systematic drift (b)
of the resonant frequency during the experiment. The variabilityy. 6. Fractional asymptotic standard errors of: @and (b) f, where

of the Estin/3-dB estimate is much larger than the variability model parameters are equated to estimated values from real data. Values of
the LS and WLS estimates. @ are 74081.32 and 45888.34 for “air" and “sample loaded” cavity states,

respectively.

IV. THEORETICAL STUDIES TABLE IV

THEORETICAL ASES (20) OFQ AND fg BASED ON DATA SIMULATED USING
TABLE Ill PARAMETER VALUES

A. Optimal Frequency Spacing
Based ord and 5, we compute asymptotic standard errors

o7, ando’ using (14)~(21). In our first study, we equate the lg‘:f‘l‘n'izzr C;;g SEn A Therg’é‘cal
resonance frequency to the model parameters of the corre- ) o 000 07482 516181
sponding mean values computed from the observed resonanct 3400 25262  240.030
curves (Table 1l1). In all cases, the resonance curve is sampled 3500° 2.6003  239.940
at 201 equally spaced frequencies. We define sample | 1500 0.6929  501.346

loaded | 5400  2.4826  208.045
5700¢ 2.5743  207.924

A Qfmax Jo 22) o air | 1000 07482 782 Hz

fo 3400 25262 126 Hz

820°  0.6001  76.5 Hz

where fiax = fo + 100df. In Fig. 6, we show the fractional sample | 1500  0.6929  173.6 Hz

loaded | 5400  2.4826 281.1 Hz

asymptotic standard error (ASE) of the estimateg)adnd f 14000 06011 1717 H
. . Z

as a function ofif. The optimal values off for estimation of
Q and f, are listed in Table IV. “ optimal
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TABLE V
STATISTICAL PROPERTIES OFESTIMATES OF () COMPUTED FROM SIMULATION
DATA INCLUDING: BIAS OF THE ESTIMATE, STANDARD ERROR OF THE
BIAS (SHOWN IN PARENTHESES, AND THE STANDARD ERROR OF THE
ESTIMATE. THE MEAN OF THE ESTIMATED VALUE OF ASE, ASE,
IS SHOWN FOR THEWLS METHOD

Q Spacing (Hz) | 3-dB Estin WLS ASE ASE

74081 1000 1381(22) 1175(15) 176(10)
(A=07408) | 701 475 332 523 517

3400 F06035) 18310 3301
(A=25188) | 804 339 209 234 235

6800 779(26)  215(18) 128
(A=50375) | 831 562 253 250 259

45888 1500 1385(18) 1169(13) 173(10)
(A=06883) | 581 421 314 505 499

5400 672(21)  2209) 286
(A =24780) | 652 286 179 202 203

10800 34420 4216 120D
(A=49559) | 693 508 218 215 223

TABLE VI

STATISTICAL PROPERTIES OFf, ESTIMATES COMPUTED FROM SIMULATION
DATA INCLUDING: BIAS OF THE ESTIMATE, STANDARD ERROR OF THE
BIAS (SHOWN IN PARENTHESEY, AND THE STANDARD ERROR OF THE

ESTIMATE. THE MEAN OF THE ESTIMATED VALUE OF ASE, ASE,
IS SHOWN FOR THEWLS METHOD

Q Spacing (Hz) | 3-dB/Estin (Hz) WLS (Hz) ASE (Hz) ASE (Hz)
74081 1000 -156(104) 202)
(A = 0.7408) 3300 75 78 77
3400 T(12) 5@
(A = 2.5188) 3808 124 122 124
6800 7(1324) 4(6)
(A = 5.0375) 4188 178 166 175
45888 1500 -368(193) 3(5)
(A = 0.6883) 6114 166 173 171
5400 54(223) 119)
(A = 2.4780) 7044 275 271 276
10800 130(242) 10(13)
(A = 4.9559) 7655 395 371 389

B. Monte Carlo Study

We simulate data similar to observed data for both cavity
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TABLE VII
TRUE VARIANCE FUNCTION PARAMETERS IN SIMULATION STUDY AND
MEAN VALUES OF ESTIMATED VARIANCE FUNCTION PARAMETERS.
STANDARD ERRORSARE SHOWN IN PARENTHESES

Q 11 x 107 49 x10° df (Hz) 1 x 10° sy x 10°
74081  8.7797 1.2058 1000 8.15(4)  2.19(5)
3400 8.34(3)  1.43(2)
6800 8.12(5)  1.34(2)
45888 6.3741 094678 1500  5.88(3)  1.68(4)
5400  6.06(3)  1.08(2)
10800  5.91(3)  1.03(1)

method (an example of the RCA method). For real data, the
WLS method yielded the most precise estimates. An advantage
to using the WLS method is th& and f, estimates have less
variability than the other methods even for “noisy” resonance
curves. (“Noisy” data can occur due to inadequate signal aver-
aging and/or low coupling.) For one observed resonance curve,
the 3-dB method does not provide an associated uncertainty for
@ and fy whereas the WLS method does.

Given that the resonance curve was sampled at a fixed number
of equally spaced frequencies in the neighborhood of the reso-
nant frequency, we determined the optimal frequency spacing in
order to minimize the asymptotic standard deviation of the es-
timate of eitherQ or f,. For optimal estimation of), with our
experimental data) = Q(fmax/fo — 1) = 2.6, where f,,.x
is the largest frequency. For optimal estimatiorf@fA = 0.6.

The fractional uncertainty of, is smaller than the fractional
uncertainty of@ when mode interference is neglected.

APPENDIX A
ESTIN METHOD

If additive noise and background are neglected, the resonance
curve model can be written as

7(fo) .
1+Q? (jﬁ—g - jﬁ—g)z

To(fr) =

states. In Tables V and VI, we compare the performance of theyood approximation for higld) values is

various methods for estimating and f,. In Table VII, we list

the statistical properties of our variance function parameter esti- 20 (fk - fo) ~ ’Tm(fo) 1/2
mates. For the lowest frequency spacing, the standard errors of fo | T(f)
the Q estimates are lower than what is predicted by asymptotjc )
theory. For the other frequency spacings, the asymptotic the&&the kth frequency, define
predicts the standard error of tiieestimate well. For all fre- 2(fu — fo)
quencies, the standard error of theestimate is well predicted Ty = T;
i 0
by asymptotic theory. and
1/2
V. SUMMARY Ye = ‘;mgo; /
The frequency-dependent additive noise in measured mi- mAk
crowave cavity resonance was characterized. The observed ®afine
were the squared magnitude of a frequency-dependent complex .
scattering parametesy; |?>. Based on a parametric model for Yk = a Tk + .

the additive noise of the observed resonance cugvand fy
and other associated model parameters were estimated u

The values ofv; andas that minimize

sing

the method of WLS. Asymptotic statistical theory was used to Z lyk — ik |?

estimate the one-sigma uncertainty(faind f,. We found that

the WLS method outperformed the 3-dB method and the Estire calledy; anddas. The Estin estimator af is & [1].
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APPENDIX B
THE 3-dB METHOD

Define
T(fo)
T(fo+ Af)
Define Aft to be the positive value ofAf such that
rag(AfT) = 3, andA f~ to be the negative value df f such
thatrqg(Af~) = 3. According to the 3-dB method, we have
- fo
Q=i
[Af*t = Af]

rap(Af) = 10logy,

If there is no measurement at the frequencies corresponding t¢z]

rap(AfT) =3 orrgs(Af7) =3, Aft or Af~ is estimated
by a linear interpolation method.

APPENDIX C
V ARIANCE FUNCTION DERIVATION: SPECIAL CASE

The quantity?'( fi.) is the sum of the squared real and imagi- 1

nary components of the complex scattering parameteffs).
The measured resonance curve can be expressed as

Tin(fr) = [9(fr) + eg ) + [A(fr) + en, ]

whereg(fi) = R[S21(fr)] andh(fx) = S[S21(fk)]. The mea-

(23)

sured real and imaginary componentsTof( fi.) are assumed

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 3, MARCH 2003

and
75 = 8ot
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